Matroids over skew tracts

نویسندگان

چکیده

Matroids over tracts provide an algebraic framework simultaneously generalizing the notions of matroids, oriented and valuated presented by Baker Bowler. Pendavingh partially extended this theory to skew hyperfields a new axiom system in terms quasi-Pl\"ucker coordinates. We present matroids tracts, which generalizes both weak developed Pendavingh. give several cryptomorphic systems for such circuits, coordinates dual pairs.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matroids over a ring

We introduce the notion of a matroid M over a commutative ring R, assigning to every subset of the ground set an R-module according to some axioms. When R is a field, we recover matroids. When R = Z, and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, respectively. More generally, whenever R is a Dedekind domain, we extend the...

متن کامل

Block Matrices over Skew Fields

In this paper, we give the existence and the representation of the group inverse for circulant block matrix M = ( A B B A ) (A, B ∈ Kn×n, andA = A, B = B) over skew field . Some relative additive results are also given. Mathematics Subject Classification: 47H09; 47H10

متن کامل

Word Alignment via Submodular Maximization over Matroids

We cast the word alignment problem as maximizing a submodular function under matroid constraints. Our framework is able to express complex interactions between alignment components while remaining computationally efficient, thanks to the power and generality of submodular functions. We show that submodularity naturally arises when modeling word fertility. Experiments on the English-French Hansa...

متن کامل

Inequivalent representations of matroids over prime fields

Article history: Received 30 March 2011 Accepted 18 February 2013 Available online 15 March 2013

متن کامل

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2023

ISSN: ['1095-9971', '0195-6698']

DOI: https://doi.org/10.1016/j.ejc.2022.103643